R-Tree for phase change memory

نویسندگان

  • Elkhan Jabarov
  • Byung-Won On
  • Gyu Sang Choi
  • Myong-Soon Park
چکیده

Nowadays, many applications use spatial data for instance-location information, so storing spatial data is important. We suggest using R -Tree over PCM. Our objective is to design a PCM-sensitive R -Tree that can store spatial data as well as improve the endurance problem. Initially, we examine how R -Tree causes endurance problems in PCM, and we then optimize it for PCM. We propose doubling the leaf node size, writing a split node to a blank node, updating parent nodes only once and not merging the nodes after deletion when the minimum fill factor requirement does not meet. Based on our experimental results while using benchmark dataset, the number of write operations to PCM in average decreased by 56 times by using the proposed R -Tree. Moreover, the proposed R -Tree scheme improves the performance in terms of processing time in average 23% compared to R -Tree.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PCR*-Tree: PCM-Aware R*-Tree

Phase change memory (PCM) is a byte-addressable type of non-volatile memory. Compared to other volatile and non-volatile memories, PCM is two to four times denser than dynamic random access memory (DRAM). It has better read latency than NAND flash memory. Even though the write endurance of PCM is 10 times better than NAND flash memory, it is still limited to times per PCM cell. When researchers...

متن کامل

Bp-Tree: A Predictive B+-Tree for Reducing Writes on Phase Change Memory

Phase change memory (PCM) has been considered an attractive alternative to flash memory and DRAM. It has promising features, including non-volatile storage, byte addressability, fast read and write operations, and supports random accesses. However, there are challenges in designing algorithms for PCM-based memory systems, such as longer write latency and higher energy consumption compared to DR...

متن کامل

A High Performance Parallel IP Lookup Technique Using Distributed Memory Organization and ISCB-Tree Data Structure

The IP Lookup Process is a key bottleneck in routing due to the increase in routing table size, increasing traıc and migration to IPv6 addresses. The IP address lookup involves computation of the Longest Prefix Matching (LPM), which existing solutions such as BSD Radix Tries, scale poorly when traıc in the router increases or when employed for IPv6 address lookups. In this paper, we describe a ...

متن کامل

A High Performance Parallel IP Lookup Technique Using Distributed Memory Organization and ISCB-Tree Data Structure

The IP Lookup Process is a key bottleneck in routing due to the increase in routing table size, increasing traıc and migration to IPv6 addresses. The IP address lookup involves computation of the Longest Prefix Matching (LPM), which existing solutions such as BSD Radix Tries, scale poorly when traıc in the router increases or when employed for IPv6 address lookups. In this paper, we describe a ...

متن کامل

Optimizing B+-Tree for PCM-Based Hybrid Memory

Phase change memory (PCM) as a newly developed storage medium has many attractive properties such as non-volatility, byte addressability, high density and low energy consumption. Thus, PCM can be used to build non-volatile main memory databases. However, PCM’s long write latency and high write energy bring challenges to PCM-based memory systems. In this paper, we propose an improvement over the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Sci. Inf. Syst.

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2017